REACTION OF 2,6-DI(BROMOMETHYL)-1,4-DIHYDROPYRIDINE WITH β -ALANINE

V. V. Kastron, I. S. Reine, and G. Duburs

We have found that the reaction of 2,6-di(bromomethyl)- 3,5-dimethoxycarbonyl-4-(2-difluoromethoxyphenyl)-1,4-dihydropyridine (I) with β -alanine ethyl ester at room temperature gives a 46% yield of a tricyclic compound, i.e., the derivative of 1,3,4,5,7,8-hexahydro(dipyrrolo)[3',4'-b;3,4-e]pyridine (II). If the reaction was conducted at a lower temperature, the nucleophilic substitution product (III) was isolated with a yield of 65%. Alkaline hydrolysis of the ester groups in the β -alanine residue of compound (III) and brief treatment with a 1 N solution of sodium hydroxide led to the production of compound (IV) with a yield of 63%. More prolonged saponification led to intramolecular cyclization and the formation of the lactam (V) with a yield of 75%. Compound can also be obtained by alkaline hydrolysis of compound (II) or as a result of the cyclization of compound (IV) in an alkaline medium at room temperature.

 $R = C_bH_4OCHF_5$ - ϕ , $R^1 = CH_5CH_5COOEt$; $R^2 = CH_2CH_5COOH$

2,6-Di[(2-ethoxycarbonyl)ethyl]-8-(2-difluoromethoxyphenyl)-1,7-dioxo-1,3,4,5,7,8-hexahydro(dipyrrolo)[3',4'-b;3,4-e]pyridine (II) ($C_{26}H_{29}F_2N_3O_7$). mp 160-162°C. PMR spectrum (deuterochloroform) (δ , ppm): 1.20 (6H, t, \underline{CH}_3CH_2), 2.52 (4H, m, CH_2CO), 3.52 (4H, m, NCH_2), 3.85 (4H, s, 3,5- CH_2), 4.08 (4H, q, \underline{CH}_2CH_3), 5.13 (1H, s, 8-H), 6.95-7.03 (4H, m, H_{arom}), 7.07 (1H, t, J = 75 Hz, CHF_2), 9.21 (1H, bs, NH).

2,6-Di[(2-ethoxycarbonylethyl)aminomethyl]-3,5-dimethoxycarbonyl-4-(2-difluoromethoxyphenyl)-1,4-dihydropyridine (III) ($C_{28}H_{37}F_2N_3O_9$). mp 69-70°C. PMR spectrum (deuterochloroform) (δ , ppm): 1.23 (6H, t, $\underline{CH_3CH_2}$), 1.77 (2H, bs, $\underline{CH_2NH}$), 2.53 (4H, t, $\underline{CH_2CO}$), 2.90 (4H, t, $\underline{CH_2N}$), 3.60 (6H, s, $\underline{OCH_3}$), 4.06 (4H, s, 2,6- $\underline{CH_2}$), 4.22 (4H, q, $\underline{CH_2CH_3}$), 5.37 (1H, s, 4-H), 6.52 (1H, t, \underline{J} = 75 Hz, $\underline{CH_2}$), 6.90-7.50 (4H, m, $\underline{H_{arom}}$), 9.58 (1H, bs, NH).

Latvian Institute of Organic Synthesis, Riga. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 12, pp. 1701-1702, December, 1995. Original article submitted September 28, 1995.

- 2,6-Di[(2-carboxyethyl)aminomethyl]-3,5-dimethoxycarbonyl-4-(2-difluoromethoxyphenyl)-1,4-dihydropyridine (IV) ($C_{24}H_{29}F_2N_3O_9$). mp 116-119 °C. PMR spectrum (deuterochloroform + DMSO-d₆) (δ , ppm): 2.52 (8H, m, COCH₂, COOH, CH₂NH), 3.56 (4H, m, CH₂N), 3.64 (6H, s, OCH₃), 3.94 (4H, s, 2,6-CH₂), 5.13 (1H, s, 4-H), 6.97 (1H, t, J = 75 Hz, CHF₂), 6.86-7.46 (4H, m, H_{arom}), 9.22 (1H, bs, NH).
- **2,6-Di(2-carboxyethyl)-8-(2-difluoromethoxyphenyl)-1,7-dioxo-1,3,4,5,7,8-hexahydro(dipyrrolo)[3',4'-b;3,4-e]pyridine (V)** ($C_{22}H_{21}F_2N_3O_7$). mp 193-195°C. PMR spectrum (DMSO-d₆) (δ , ppm): 2.39 (4H, m, CH₂CO), 3.43 (4H, m, CH₂N), 4.03 (4H, s, 3,5-CH₂), 4.87 (1H, s, 8-H), 6.90-7.40 (4H, m, H_{arom}), 7.28 (1H, t, J = 75 Hz, CHF₂), 9.87 (1H, bs, NH), 12.23 (2H, bs, COOH).